SD安装笔记
SD安装笔记
./webui.sh --server-name=0.0.0.0 --listen --device-id 1
set COMMANDLINE_ARGS=–share
/etc/apt/sources.list.d/cuda-ubuntu2204-12-2-local.list
如果要删除nividia驱动,这个源必须删除。
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run
sudo sh cuda_12.2.0_535.54.03_linux.run
run文件删除,是成功率比较大的
CUDA的下载页面
sudo vim /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
sudo update-initramfs -u
lsmod | grep nouveau
禁用nouveau
sudo ubuntu-drivers devices
查看已经安装的驱动
import torch
torch.version
‘2.1.0+cu121’
torch.cuda.is_available()
查看Torch版本
import torch
torch.version
‘2.1.0+cu121’
torch.cuda.is_available()
查看Torch版本
https://blog.csdn.net/zxdd2018/article/details/127705627
cuDNN的安装
sudo apt-get -f install
修复依赖问题,但是大多数的时候不太好用, 还是得删除了,重新装最干净
sudo apt-get upgrade
cannot import name ‘_compare_version‘ from ‘torchmetrics.utilities.imports‘
https://zhuanlan.zhihu.com/p/619901627
比较全的安装CUDA的方法。
export CUDA_VISIBLE_DEVICES=0,1,2,3
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple
还是不行,然后换成下面的命令:
pip install open-clip-torch
open-clip-torch 使用 阿里的镜像好用
–xformers
–reinstall-torch
sudo .run --silent --driver
CUDA_VISIBLE_DEVICES=0,1,2,3 python launch.py --share
No module ‘xformers’. Proceeding without it.
装0.0.16版本,装高版本的没法用。
webui.sh --xformers
使用如下指令启动webui时,报错ImportError: cannot import name ‘_compare_version’ from ‘torchmetrics.utilities.imports’ (/root/.conda/envs/aigc/lib/python3.10/site-packages/torchmetrics/utilities/imports.py),显然这是版本兼容性问题。
将torchmetrics版本降低到0.11.4,推荐使用指令:
pip install torchmetrics==0.11.4
webui.sh --xformers
安装xformers 需要使用llvm的clang++
export LDFLAGS=“-L/usr/local/opt/llvm/lib -Wl,-rpath,/usr/local/opt/llvm/lib”
export CPPFLAGS=“-I/usr/local/opt/llvm/include”
export CC=“/usr/local/opt/llvm/bin/clang”
export CXX=“/usr/local/opt/llvm/bin/clang++”
export CC=“/usr/bin/gcc”
export CXX=“/usr/bin/g++”
To use the bundled libc++ please add the following LDFLAGS:
LDFLAGS=“-L/opt/homebrew/opt/llvm/lib/c++ -L/opt/homebrew/opt/llvm/lib -lunwind”
llvm is keg-only, which means it was not symlinked into /opt/homebrew,
because macOS already provides this software and installing another version in
parallel can cause all kinds of trouble.
If you need to have llvm first in your PATH, run:
echo ‘export PATH=“/opt/homebrew/opt/llvm/bin:$PATH”’ >> ~/.zshrc
For compilers to find llvm you may need to set:
export LDFLAGS=“-L/opt/homebrew/opt/llvm/lib”
export CPPFLAGS=“-I/opt/homebrew/opt/llvm/include”
==> Summary
🍺 /opt/homebrew/Cellar/llvm/19.1.0: 8,068 files, 1.9GB
==> Running brew cleanup llvm
…
Disable this behaviour by setting HOMEBREW_NO_INSTALL_CLEANUP.
Hide these hints with HOMEBREW_NO_ENV_HINTS (see man brew
).
Removing: /opt/homebrew/Cellar/llvm/18.1.8… (7,722 files, 1.8GB)
Removing: /Users/shengyang1/Library/Caches/Homebrew/llvm_bottle_manifest–18.1.8… (38.2KB)
==> Caveats
==> llvm
To use the bundled libc++ please add the following LDFLAGS:
LDFLAGS=“-L/opt/homebrew/opt/llvm/lib/c++ -L/opt/homebrew/opt/llvm/lib -lunwind”
llvm is keg-only, which means it was not symlinked into /opt/homebrew,
because macOS already provides this software and installing another version in
parallel can cause all kinds of trouble.
If you need to have llvm first in your PATH, run:
echo ‘export PATH=“/opt/homebrew/opt/llvm/bin:$PATH”’ >> ~/.zshrc
For compilers to find llvm you may need to set:
export LDFLAGS=“-L/opt/homebrew/opt/llvm/lib”
export CPPFLAGS=“-I/opt/homebrew/opt/llvm/include”
LLVM安装后显示的建议配置
export LDFLAGS=“-L/opt/homebrew/opt/llvm/lib -Wl,-rpath,/opt/homebrew/opt/llvm/lib”
export CPPFLAGS=“-I/opt/homebrew/opt/llvm/include”
export CC=“/opt/homebrew/opt/llvm/bin/clang”
export CXX=“/opt/homebrew/opt/llvm/bin/clang++”
查看pytorch版本号
python -c “import torch; print(torch.version)”
pip3 install xformers==0.0.26.post1 --dry-run 这句话中的–dry-run是什么意思
--dry-run
是一个选项,用于在执行某些命令时进行“演练”或“模拟”操作,而不实际执行任何更改。在你提供的命令中:
这个命令的意思是:尝试安装 xformers
版本 0.0.26.post1
,但是不会真正执行安装操作。它会显示如果实际执行安装的话,将会发生什么,比如依赖关系、需要下载的文件等,但不会将其下载或安装。这对于测试和确认操作是安全的,避免了可能的问题。
请注意,并非所有版本的 pip
都支持 --dry-run
选项,所以你可能需要查看特定版本的文档来确认该选项是否可用。
尝试安装那个版本可以安装使用
pip3 install xformers0.0.26.post1 --dry-run
pip3 install xformers0.0.25 --dry-run
…
pip3 install xformers0.0.20 --dry-run
pip3 install xformers0.0.19 --dry-run
xformers pytorch
0.0.26.post1 torch2.3.0
0.0.25 torch2.2.1
0.0.24 torch2.2.0
0.0.23 torch2.1.1
0.0.22 torch2.0.1
0.0.21 torch2.0.1
0.0.20 torch2.0.1
0.0.19 torch2.0.0
0.0.18 torch2.0.0
0.0.17 torch2.0.0
0.0.16 torch==1.13.1
torch 1.12.1安装 0.0.16版本
对应安装 llvm@13
brew install llvm@13
/opt/homebrew/Cellar/llvm@13/lib
/opt/homebrew/Cellar/llvm@13/13.0.1_2
生效配制
export LDFLAGS=“-L/opt/homebrew/Cellar/llvm@13/13.0.1_2/lib -Wl,-rpath,/opt/homebrew/Cellar/llvm@13/13.0.1_2/lib”
export CPPFLAGS=“-I/opt/homebrew/Cellar/llvm@13/13.0.1_2/include”
export CC=“/opt/homebrew/Cellar/llvm@13/13.0.1_2/bin/clang”
export CXX=“/opt/homebrew/Cellar/llvm@13/13.0.1_2/bin/clang++”
export PATH=“/opt/homebrew/Cellar/llvm@13/13.0.1_2/bin:$PATH”
pip install xformers==0.0.16
github 安装0.0.16
git submodule update --init --recursive
export LDFLAGS=“-L/usr/local/opt/llvm@13/lib -Wl,-rpath,/usr/local/opt/llvm@13/lib”
export CPPFLAGS=“-I/usr/local/opt/llvm@13/include”
export CC=“/usr/local/opt/llvm@13/bin/clang”
export CXX=“/usr/local/opt/llvm@13/bin/clang++”
export PATH=“/usr/local/opt/llvm@12/bin:$PATH”
brew link llvm@13
export PATH=“/usr/local/opt/llvm@12/bin:$PATH”
export LDFLAGS=“-L/usr/local/opt/llvm@12/lib -Wl,-rpath,/usr/local/opt/llvm@12/lib”
export CPPFLAGS=“-I/usr/local/opt/llvm@12/include”
export CC=“/usr/local/opt/llvm@12/bin/clang”
export CXX=“/usr/local/opt/llvm@12/bin/clang++”
在stable difussion中如何引用lora模型
https://zhuanlan.zhihu.com/p/621380618
在 Stable Diffusion 中使用 LoRA(Low-Rank Adaptation)模型通常需要以下几个步骤:
-
确保环境准备:
- 确保你已经安装了 Stable Diffusion 的环境,包括相关的依赖库和框架(如 PyTorch、Transformers 等)。
-
下载 LoRA 模型:
- 从相应的资源网站(如 Hugging Face Model Hub 或其他地方)下载你需要的 LoRA 权重文件。
-
加载模型:
- 使用适当的代码加载 Stable Diffusion 模型以及 LoRA 权重。以下是一个示例代码片段,展示如何在 Python 中实现这一过程:
-
设置参数:
- 根据需要调整生成图像时的参数,例如
num_inference_steps
、guidance_scale
等,以获得最佳效果。
- 根据需要调整生成图像时的参数,例如
-
运行生成:
- 通过调用生成函数,使用你的提示词进行图像生成。
请根据具体的 LoRA 实现和版本调整代码示例。如果你使用的是特定的框架或工具(例如 diffusers
),请参考其文档获取详细信息。
/opt/homebrew/opt/llvm/bin/clang -Wno-unused-result -Wsign-compare -Wunreachable-code -DNDEBUG -fwrapv -O2 -Wall -fPIC -O2 -isystem /Users/shengyang1/opt/anaconda3/envs/
gfpgan/include -fPIC -O2 -isystem /Users/shengyang1/opt/anaconda3/envs/gfpgan/include -I/opt/homebrew/opt/llvm/include -I/private/var/folders/rq/fxmg4qxs2c3dcsc0bg9n71b80000gn
/T/pip-install-fi_qw4m6/xformers_000e06893b784419be96fe264710c0dc/xformers/csrc -I/Users/shengyang1/opt/anaconda3/envs/gfpgan/lib/python3.10/site-packages/torch/include -I/Use
rs/shengyang1/opt/anaconda3/envs/gfpgan/lib/python3.10/site-packages/torch/include/torch/csrc/api/include -I/Users/shengyang1/opt/anaconda3/envs/gfpgan/lib/python3.10/site-pac
kages/torch/include/TH -I/Users/shengyang1/opt/anaconda3/envs/gfpgan/lib/python3.10/site-packages/torch/include/THC -I/Users/shengyang1/opt/anaconda3/envs/gfpgan/include/pytho
n3.10 -c xformers/csrc/attention/attention.cpp -o build/temp.macosx-10.9-x86_64-cpython-310/xformers/csrc/attention/attention.o -O3 -std=c++11 -fopenmp -DTORCH_API_INCLUDE_EXT
ENSION_H -DPYBIND11_COMPILER_TYPE="_clang" -DPYBIND11_STDLIB="_libcpp" -DPYBIND11_BUILD_ABI="_cxxabi1002" -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0
export LDFLAGS=“-L/opt/homebrew/opt/llvm/lib -Wl,-rpath,/opt/homebrew/opt/llvm/lib”
export CPPFLAGS=“-I/opt/homebrew/opt/llvm/include”
export CC=“/opt/homebrew/opt/llvm/bin/clang”
export CXX=“/opt/homebrew/opt/llvm/bin/clang++”
/opt/homebrew/Cellar/llvm/19.1.0/bin/…/include/c++/v1/math.h:402:63: error: use of undeclared identifier ‘FP_SUBNORMAL’
402 | return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, __x);
/opt/homebrew/opt/llvm/bin
bing回答的
export LDFLAGS=“-L/usr/local/opt/llvm/lib -Wl,-rpath,/usr/local/opt/llvm/lib”
export CPPFLAGS=“-I/usr/local/opt/llvm/include”
export CC=“/usr/local/opt/llvm/bin/clang”
export CXX=“/usr/local/opt/llvm/bin/clang++”
网上找的配置的
export LDFLAGS=“-L/usr/local/opt/llvm/lib -Wl,-rpath,/usr/local/opt/llvm/lib”
export CPPFLAGS=“-I/usr/local/opt/llvm/include”
export CC=“/usr/local/opt/llvm/bin/clang”
export CXX=“/usr/local/opt/llvm/bin/clang++”