Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +, -, *, /
. Each operand may be an integer or another expression.
Note:
- Division between two integers should truncate toward zero.
- The given RPN expression is always valid. That means the expression would always evaluate to a result and there won’t be any divide by zero operation.
Example 1:
1 2 3
| Input: ["2", "1", "+", "3", "*"] Output: 9 Explanation: ((2 + 1) * 3) = 9
|
Example 2:
1 2 3
| Input: ["4", "13", "5", "/", "+"] Output: 6 Explanation: (4 + (13 / 5)) = 6
|
Example 3:
1 2 3 4 5 6 7 8 9 10
| Input: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"] Output: 22 Explanation: ((10 * (6 / ((9 + 3) * -11))) + 17) + 5 = ((10 * (6 / (12 * -11))) + 17) + 5 = ((10 * (6 / -132)) + 17) + 5 = ((10 * 0) + 17) + 5 = (0 + 17) + 5 = 17 + 5 = 22
|
analysis
逆波兰表达式最小的一个单元是例如3 2 +
, 这就是所谓的 3+2. 但是不是所有情况都这样简单, 比如以下 5 5 / 2 +
, 画成树如下图:
有没有觉得像是 pre-order recursion 可以解决的?
pre-order recursion 可以解决, 但是用了 call stack, 本质上是一个 stack, 那么, 这道题也可以用两个 stack 来解决.
time O(n)
space 不好说
soluton2 050118
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| class { public int evalRPN(String[] tokens) { Deque<Integer> stack = new LinkedList<>(); for (int i = 0; i<tokens.length; i++) { if (tokens[i].equals("+")) { stack.push(stack.pop()+stack.pop()); } else if (tokens[i].equals("-")) { stack.push(-stack.pop()+stack.pop()); } else if (tokens[i].equals("*")) { stack.push(stack.pop()*stack.pop()); } else if (tokens[i].equals("/")) { int second = stack.pop(); int first = stack.pop(); stack.push(first/second); } else { stack.push(Integer.parseInt(tokens[i])); } } return stack.pop(); } }
|
solution1 050118
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
| class { public int evalRPN(String[] tokens) { Deque<String> stack = new LinkedList<>(); for(String token: tokens) { stack.push(token); } return eval(stack); } private int eval(Deque<String> stack) { if(!isOperator(stack.peek())) { return Integer.parseInt(stack.pop()); } String operator = stack.pop(); int firstOperand = eval(stack); int secondOperand = eval(stack); if(operator.equals("+")) { return firstOperand+secondOperand; }else if(operator.equals("-")) { return secondOperand-firstOperand; }else if(operator.equals("*")) { return firstOperand*secondOperand; }else{ return secondOperand/firstOperand; } } private boolean isOperator(String token) { return token.equals("+") || token.equals("-") || token.equals("*") || token.equals("/"); } }
|