题目要求
Evaluate the value of an arithmetic expression in Reverse Polish Notation.
Valid operators are +, -, *, /. Each operand may be an integer or another expression.
Some examples:
["2", "1", "+", "3", "*"] -> ((2 + 1) * 3) -> 9
["4", "13", "5", "/", "+"] -> (4 + (13 / 5)) -> 6
计算后缀表达式。我们一般看到的数学表达式就是中缀表达式,也就是将符号放在两个数字之间。后缀表达式也就是将运算符放在相应数字的后面。后缀表达式相当于树中的后序遍历。
思路一:栈
当我们遇到数字时就将数字压入栈中,如果遇到操作符就将栈顶的两个数字弹出,并将其根据操作符计算结构并重新压入栈中。栈中剩下的最后的值就是我们的结果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| public int (String[] tokens) { LinkedList<Integer> stack = new LinkedList<Integer>(); for(String token : tokens){ if(token.equals("+")){ int operand1 = stack.pop(); int operand2 = stack.pop(); stack.push(operand2 + operand1); }else if(token.equals("-")){ int operand1 = stack.pop(); int operand2 = stack.pop(); stack.push(operand2 - operand1); }else if(token.equals("*")){ int operand1 = stack.pop(); int operand2 = stack.pop(); stack.push(operand2 * operand1); }else if(token.equals("/")){ int operand1 = stack.pop(); int operand2 = stack.pop(); stack.push(operand2 / operand1); }else{ stack.push(Integer.valueOf(token)); } } return stack.pop(); }
|
思路二:递归
从后缀表达式的末尾开始递归获取操作符对应的两个操作符。通过index获得对应位置的操作符。如果对应的还是操作符,则继续递归往前计算。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| int index; public int evalRPN2(String[] tokens){ index = tokens.length-1; return recursive(tokens); } public int recursive(String[] tokens){ String current = tokens[index--]; int operand1, operand2; switch(current){ case "+" : operand1 = recursive(tokens); operand2 = recursive(tokens); return operand1 + operand2; case "-" : operand1 = recursive(tokens); operand2 = recursive(tokens); return operand2 - operand1; case "*" : operand1 = recursive(tokens); operand2 = recursive(tokens); return operand2 * operand1; case "/" : operand1 = recursive(tokens); operand2 = recursive(tokens); return operand2 / operand1; default: return Integer.valueOf(current); } }
|